خلاصه
این مقاله مسائل و راه کارهای اصلی مرتبط با کیفیت توان را در میکروگریدها، سیستم های ذخیرۀ انرژی توزیع شده و میکروگریدهای ترکیبی AC/DC را به صورت مختصر بیان می نماید. در ابتدا بهبود کیفیت توان در میکروگریدهای دارای ارتباط با شبکه ارائه می شود سپس کنترل اشتراکی جهت بهبود بخشیدن هارمونیکهای ولتاژ و عدم توازن ولتاژ در میکروگریدها مرور می گردد. بعد از آن استفاده از جبران ساز همزمان استاتیک (STATCOM) در میکروگریدهای متصل شده به شبکه معرفی می شود که از آن جهت بهبود عدم توازن و یا افت/افزایش بیش از حد ولتاژ استفاده می گردد. در نهایت کنترل هماهنگ سیستم توزیع شده (پراکندهی) ذخیره و میکروگریدهای ترکیبی AC/DC توضیح داده شده اند.
واژگان شاخص- میکروگریدها، ذخیرۀ انرژی توزیع شده، کیفیت توان، STATCOM
. I مقدمه
میکروگرید یک شبکۀ محلی است که از ژنراتورهای توزیع شده (DGs) ، سیستم های ذخیرۀ انرژی و بارهای پراکنده تشکیل شده است که ممکن است در یکی از دو مد (حالت) اتصال به شبکه و یا به صورت مجزا عمل نماید [1,2]. DG ها اغلب از طریق مبدلهای واسط توان الکتریکی به میکروگریدها متصل می شوند. نقش اصلی یک مبدل واسط، کنترل توان تزریقی است. به علاوه جبران مشکلات کیفیت توان همانند هارمونیکهای ولتاژ می تواند از طریق استراتژی های کنترل صحیح قابل دستیابی باشد. راه کارهای جبران هارمونیک ولتاژ بر اساس وادار نمودن واحدهای DG به داشتن یک مقاومت در فرکانسهای هارمونیک است تا از این طریق این هارمونیکها را جبران نماید [4,10].
عدم توازن ولتاژ هنگامی ظاهر می شود که بار تکفاز به میکروگرید متصل می شود. جبران عدم توازن ولتاژ معمولاً با استفاده از مجموعه ای از فیلترهای فعال توان و از طریق تزریق توالی ولتاژ منفی به صورت سری با خط توزیع توان انجام می شود [4]. اگرچه کارهایی نیز وجود دارند که در آنها از فیلتر فعال توان موازی جهت جبران عدم توازن ولتاژ استفاده شده است [6]. در این کار عدم توازن ولتاژکه از بارهای نامتوازن ناشی شده است بوسیلۀ تزریق سکانسی از توالی جریانهای منفی جبران شده است.
چکیده
این مقاله یک ژنراتور فلش ولتاژ ترانسفورمری (VSG) مناسب برای اندازه گیری قابلیت سوسپتانس تجهیزات الکتریکی به فلش ولتاژ را بیان می کند. در VSG (منظور تولید کننده فلش ولتاژ که بر مبنای ترانسفورماتور کار می کند) ساخته شده، از یک اتو ترانس و 2 رله حالت ماندگار (SSR) برای ارایه ولتاژ نامی و ولتاژ فلش به بار استفاده شده است. وضعیت سوییچینگ دو رله حالت ماندگار (SSR) توسط سیگنال مدت زمان ولتاژ نامی و ولتاژ فلش تولید شده توسط مدارات الکترونیکی کنترل می شود. نتایج عملکرد VSG نشان می دهد که این ژنراتور فلش کنترل موثری از دامنه فلش، مدت زمان فلش، نقاط آغاز و پایان فلش بر روی شکل موج ولتاژ خروجی انجام می دهد. همچنین اگر نیاز باشد می تواند به عنوان تولید کننده swell ولتاژ و تولید کننده وقفه ولتاژ عمل کند. با تهیه ترانسفورماتور فشار قوی از سمت اولیه، VSG می تواند فلش، swell، و وقفه ولتاژ فشار قوی را نیز ارائه دهد. ساخت VSG ارایه شده در آزمایشگاه و بطور دستی آسان تر است، و هزینه های ساخت آن بسیار پایین تر از تهیه محصولات VSG آن از بازار فعلی است.
کلیدواژه: حساسیت تجهیزات، قطع ولتاژ، فلش ولتاژ، ژنراتور فلش ولتاژ، اماس ولتاژ
مقدمه
سیستم های قدرت مدرن کماکان در حال حساس و حساس تر شدن به کیفیت توان تولید شده می باشند. دلیل این امر این است که نه تنها تجهیزات مدرن شامل انواع زیادی از قطعات الکترونیکی که می توانند در برابر اختلالات توان بسیار آسیب پذیر باشند می باشد، بلکه مصرف کننده ها نیز نسبت به تلفات ناشی از عملکرد نادرست تجهیزات برقی حساستر شده اند. یکی از رایج ترین تداخلات توان، فلش ولتاژ است که معمولن بطور اتفاقی رخ می دهد و چند سیکلی هم بیشتر دوام نمی یابد. اگرچه تجهیزات حساس، معمولن در مقابل چنین فلش هایی ترییپ داده یا خاموش می شوند؛ حتی اگر ولتاژ نامی در چند سیکل باز گردد. بدین ترتیب، فلش ولتاژ بیشترین تلفات مالی را در مقایسه با بیشتر انواع تداخلات توان در پی دارد [1]، [2].
مقدمه:
امروزه تولید گاز سنتز از گاز طبیعی، بعنوان یکی از مهمترین تکنولوژی های که در آن از گاز طبیعی استفاده می شود، مطرح است. گاز سنتز کاربردهای فراوانی از قبیل استفاده به عنوان خوراک در کارخانه تولید آمونیاک، تولید اسید استیک و اسید فرمیک، خوراک فرآیندهای هیدروکراکتیگ و هیدروتریتینگ در پالایشگاه ها، تولید متانول و بسیاری موارد دیگر دارد. اما تولید گاز سنتز با استفاده از روش های متعددی انجام می شود. این روش ها به دو بخش عمده، حرارتی و کاتالیستی تقسیم می شوند. یکی از مهمترین این روشها، فرآیند رفرمینگ با بخار آب کاتالیستی است که عمدتاً از فلز نیکل بعنوان کاتالیست در آن استفاده می شود. در این پروژه ابتدا در فصل اول به شرح کلی از وضعیت گاز طبیعی در جهان و ایران و تکنولوژی های گاز طبیعی پرداخته می شود. در فصل دوم شرح کلی پیرامون روشهای تولید گاز سنتز ارائه می گردد. در فصل سوم به شرح فرآیند رفرمینگ بخار برای تولید متانول از گاز سنتز به طور مفصل شرح داده می شود و سپس در فصل چهارم به طراحی یک واحد رفرمینگ بخار یا SRI می پردازیم. در انتها جمع بندی از مطالب فوق بیان می گردد.
فهرست مطالب:
مقدمه. ۱
فصل اول: ۲
وضعیت گاز طبیعی در ایران و جهان. ۲
۱-۱- مقدمه. ۳
۱-۲- گاز طبیعی در جهان. ۳
۱-۳- ذخایر و منابع. ۱۱
۱-۴- چرا از گاز طبیعی استفاده می کنیم؟. ۱۴
۱-۵- تکنولوژی های استاندارد گاز طبیعی.. ۱۴
۱-۶- سیمای صنعت گاز ایران. ۱۵
۱- ۷- پالایش گاز طبیعی در ایران: ۱۶
۱- ۸- سیستم انتقال گاز طبیعی: ۱۷
روشهای تولید گاز سنتز. ۱۸
۲-۱- مقدمه. ۱۹
۲-۱-۱- اهمیت گاز سنتز. ۱۹
۲-۲- عمده مصارف گاز سنتز: ۲۰
۲-۳- روشهای تولید گاز سنتز. ۲۲
۲-۳-۱- گازی شکل کردن زغال سنگ (Coal Gasification) ۲۲
۲-۳-۲- رفرمینگ بخار (steam reforming) ۲۵
۲-۳-۳- رفرمینگ حرارتی خود به خود (ATR) ۳۱
۲-۳-۴- اکسیداسیون جزئی (POX) ۳۲
۲-۳-۵- اکسیداسیون جزئی کاتالیستی (cpo) ۳۳
۲-۳-۶- رفرمینگ دو مرحله ای.. ۳۵
۲-۳-۷- رفرمینگ تبدیل حرارتی (heatexchanger reforming) ۳۶
۲-۳-۸- روش های ترکیبی ریفرمینگ.. ۳۶
فصل سوم: ۴۷
تولید گاز سنتز بطریق SMR. ۴۷
۳-۱- شرح کلی.. ۴۹
۳-۲- مقدمه: ۵۱
۳-۳- تکنولوژی.. ۵۲
۳-۴- تولید گاز سنتز. ۵۴
۳-۴-۱- سولفور زدایی: ۵۴
۳-۴-۲- هیدروکربن های رفرمینگ بخار. ۵۵
۳-۴-۳- توصیف فرآیند و تجهیزات. ۵۷
۳-۴-۳-۱- رفرمر Lurgi ۵۷
۳-۴-۴- آرایش جای گزین فرآیند. ۶۱
۳-۴-۳-۱- پیش رفرمینگ (Prereforming) ۶۱
۳-۴-۴-۲- Co۲ به عنوان خوراک اضافی.. ۶۲
۳-۴-۵- بازیابی گرمای بازمانده ۶۴
۳-۴-۶- قسمت سرمایش گاز دودکش. ۶۴
۳-۴-۷- قسمت سرمایش گاز رفرم شده ۶۵
۳-۵- سنتز متانول. ۶۶
۳-۵-۱- چکیده ۶۶
۳-۵-۲- شرح فرآیند و تجهیزات. ۶۶
۳-۵-۲-۱- راکتور متانول. ۶۶
۳-۵-۲-۲- چرخه سنتز متانول. ۷۲
۳-۶- واحد تقطیر متانول. ۷۳
۳-۶-۱- چکیده ۷۳
۳-۶-۲- شرح فرآیند و تجهیزات. ۷۶
۳-۶-۲-۱- تقطیر با صرفه جویی در هزینه. ۷۶
۳-۶-۲-۲- تقطیر با صرفه جویی در انرژی.. ۷۹
۳-۶-۲-۳- روشهای دیگر. ۸۰
۳-۸- خدمات و واحدهای خارج از شبکه. ۸۴
۳-۸-۱- سیستم آب سرد. ۸۴
۳-۸-۲- سیستم گاز بی اثر, دستگاهها و منبع هوای پلنت. ۸۵
۳-۸-۳- سیستم مشعل.. ۸۶
۳-۸-۴- دیگ بخار راه انداز. ۸۶
۳-۸-۵- واحد تصفیه آب. ۸۶
۳-۸-۶- ژنراتور نیرو. ۸۷
فصل چهارم: ۸۸
طراحی یک واحد صنعتی به روش SMR و تولید گاز سنتز. ۸۸
۴-۱- مقدمه تولید گاز سنتز از گاز طبیعی به روش SMR. ۸۹
۴-۲- شرح عملیات. ۹۲
سیستم تفکیک دی اکسید کربن: ۹۵
۴-۲-۱: رفرمینگ بخار و بازیافت حرارتی (قسمت ۱۰۰) ۹۵
۴-۲-۲- تفکیک دی اکسید کربن (قسمت ۲۰۰) : ۹۹
۴-۲-۳- جداسازی هیدروژن (قسمت ۳۰۰) ۱۰۰
۴-۳- شرح عملیات. ۱۱۰
۴-۴- برآورد هزینه (Cost Estimate) ۱۱۴
نتیجه گیری و جمع بندی: ۱۳۵
منابع و مآخذ: ۱۳۷