خلاصه
بسیاری از مسائل علمی، مهندسی و اقتصادی شامل بهینه سازی مجموعه ای از پارامترها می باشد. این مسائل شامل نمونه هایی همچون به حداقل رسانی اتلاف در شبکه برق با یافتن تنظیمات بهینه بخش ها، یا تقویت شبکه عصبی برای تشخیص تصویر چهره افراد می باشد. الگوهای بهینه سازی بیشماری مطرح شده اند تا به حل این مشکلات، با درجلت مختلفی از موفقیت بپردازند. بهینه سازی ازدحام ذرات (PSO) تکنیک نسبتا جدیدی می باشد که به صورت تجربی نشان داده شده است که دارای عملکرد خوبی بر روی بسیاری از این مسائل بهینه سازی می باشد. این مقاله مدل نظری را ارائه می دهد که می تواند برای شرح رفتار بلندمدت الگوریتم مورد استفاده قرار گیرد. نسخه پیشرفته بهینه کننده ازدحام ذرات ایجاد شده و نشان داده شده که دارای همگرایی تضمین شده ای بر روی سطح محلی می باشد. این الگوریتم رو به توسعه بوده، که منجر به الگوریتم هایی با همگرایی تضمین شده در سطح جهانی شده است. مدلی برای ایجاد الگوریتم های PSO مشترک ایجاد شده است، که منتهی به معرفی دو الگوریتم مبتنی بر PSO جدید شده است. شواهد تجربی نیز ارائه شده تا به پشتیبانی از خصوصیات نظری پیش بینی شده توسط مدل های مختلف، با استفاده از فعالیت های مبنا ترکیبی برای بررسی مشخصه های ویژه بپردازد. سپس الگوریتم های مختلف مبتنی بر PSO، در مورد فعالیت تقویت شبکه های عصبی اعمال می گردد که به ادغام نتایج حاصل شده بر روی فعالیت های مبنا ترکیبی بپردازد.
مقدمه
شما با صدای ساعتتان بیدار می شوید. ساعتی که توسط شرکتی ساخته می شود تا سود خود را با مد نظر قرار دادن تخصیص بهینه منابع تحت کنترلش به حداکثربرساند. شما کتری را روشن می کنید تا قهوه ای درست کنید، بدون اینکه در مورد مدت زمان طولانی که شرکت برق برای بهینه سازی ارائه برق وسایل تان صرف می کند، فکر کنید. هزاران متغیر در شبکه برق تلاشی را به منظور به حداقل رسانی اتلاف در شبکه به منظور به حداکثر رساندن بازدهی تجهیزات برقی تان انجام می دهد. شما وارد اتومبیلتان شده وموتور را بدون درک پیچیدگی های این معجزه کوچک مهندسی شده، روشن می کنید. هزاران پارامتر توسط سازندگان مد نظر قرار داده می شود تا وسیله نقلیه ای را تحویل دهند که متناسب با انتظارتان بوده، که شامل زیبایی بدنه تا شکل آینه بغل اتومبیل می باشد تا از تصادف جلوگیری شود.
خلاصه
مشکلات 1، 2، 3 ذکر شده در بخش 3.3.3، اجرای جلوگیری از بن بست ها (وقفه ها) را در سیستم های واقعی پیچیده می کند. روش جدید ما برای ادغام شناسایی این بن بست ها و اجتناب از آن ها (اگرچه نیازمند اطلاعات پیشرفته نمی باشد، دانش مقدماتی از شرایط منابع) ، سهمی در سازگاری راحت تر جلوگیری از این بن بست ها در MPSoC، با تطبیق حداکثر آزادی به همراه مزایای های اجتناب از این بن بست ها، دارد (یعنی همزمانی حداکثر درخواست ها و تایید آن بستگی به مسیرهای اجرایی خاص دارد).
DAU از این بن بست ها بدون مجوز به درخواست دیگری که منجر به بن بست می گردد، جلوگیری می کند. در مورد تغییر مسیر که در نتیجه تلاش به منظور جبوگیری از بن بست ها می باشد، DAU از یکی از پردازشگرهای مرتبط با این تغییر مسیر می خواهد تا منابع را منتشر کرده به گونه ای که این تغییر مسیر مشخص گردد.
خلاصه
این مقاله الگوریتم جدیدی را در ارتباط با کاهش پیچیدگی های محاسباتی در تشخیص صدای افراد بر مبنای چارچوب مدل گویش ترکیبی گاوس ارائه می کند. در ارتباط با موارد کاربردی که در آن ها سلسله مراتب مشاهدات کلی مد نظر قرار می گیرد، به توضیح این مطلب می پردازیم که بررسی سریع مدل های احتمالی تشخیص صدا از طریق تنظیم توالی زمانی بردارهای مشاهداتی مورد استفاده برای بروزرسانی احتمالات جمع آوری شده مربوط به هر مدل گوینده، حاصل می گردد. رویکرد کلی در استراتژی جستجوی مقدماتی ادغام می شود، و نشان داده شده است که باعث کاهش زمان برای تعیین هویت گوینده از طریق فاکتورهای 140 بر روی روش های جستجوی استاندارد کلی و فاکتور شش با استفاده از روش جستجوی مقدماتی شده است. که گویندگان را از مجموع 138 گوینده دیگر تشخیص می دهد.
مقدمه
توانایی تشخیص صدای هر فرد اخیرا در تحقیقات پیشین مورد توجه قرار گرفته است. کاربرد های شناسایی و تشخیص صدای هر فرد در ارتباط با تماس های تلفنی، امنیت کامپیوتری و همچنین دسترسی به اسناد مهم بر روی اینترنت می باشد. استفاده از مدل ترکیبی گاوس برای تعیین هویت گویندگان عملکردهای قابل مقایسه ای را در ارتباط با تکنیک های موجود دیگر ایجاد کرده است. برای نمونه، میزان خطا در ارتباط با 138 گوینده به میزان 0.7% کاهش نشان داده است. به هر حال با افزایش اندازه جمعیت و ابزارهای آزمایشی، هزینه محاسباتی اجرای این بررسی ها به طور اساسی افزایش داشته است. این مقاله مسئله کاهش پیچیدگی های محاسباتی شناسایی هویت گوینده را با استفاده از جستجوی مقدماتی همراه با تنظیملت جدید سلسله مراتب مشاهدات مد نظر قرار می دهد.