خلاصه
چکیده – ما سیستم یکپارچه ای را در ارتباط با مدل های مخلوط گاوس ساختاری (SGMM) و شبکه های عصبی به منظور دستیابی به راندمان محاسباتی و دقت بالا در ارتباط با تعیین هویت گوینده ارائه می دهیم. مدل پس زمینه ساختاری (SBM) در ابتدا از طریق خوشه بندی زنجیره ای تمام موئلفه های مخلوط گاوس در ارتباط با مدل پس زمینه ساختاری ایجاد می گردد. به این ترتیب، یک فضای اکوستیک به بخش های چندگانه ای در سطوح مختلف قدرت تشخیص، جزء بندی می گردد. برای هر یک از گوینده های مورد نظر، مدل مدل مخلوط گاوس ساختاری (SGMM) از طریق استدلال حداکثری (MAP) سازگار با مدل پس زمینه ساختاری (SBM) ایجاد می گردد. در هنگام تست، تنها زیرمجموعه کمی از موئلفه های مخلوط گاوس برای هر بردار مختصات محاسبه می گردد تا هزینه محاسبه را به طور قابل توجهی کاهش دهد. علاوه بر این، امتیازات حاصل شده در لایه های مدل های درخت ساختار، برای تصمیم گیری نهایی از طریق شبکه عصبی ادغام می گردند. وضعیت های مختلفی در بررسی های انجام شده بر روی داده های حاصل از گفتگوهای تلفنی مورد استفاده در ارزیابی هویت گوینده NIST، مقایسه شد. نتایج تجربی نشان می دهد که کاهش محاسبه توسط فاکتور 17 از طریق 5% کاهش نسبی در میزان خطای هم ارز (EER) در مقایسه با خطو مبنا، حاصل می گردد. روش SGMM-SBM (مدل مخلوط گاوس ساختاری- مدل پس زمینه ساختاری) ، مزایایی را نسبت به مدل اخیرا مطرح شده GMM (مدل مخلوط گاوس) داشته، که شامل سرعت بالاتر و عملکرد تشخیص بهتر، می باشد.
کلیداژه: خوشه بندی گاوس، شبکه عصبی، تعیین هویت گوینده، مدل مخلوط گاوس ساختاری
مقدمه
تحقیقات بر روی تشخیص گوینده که شامل تعیین هویت و تطبیق موارد می باشد به عنوان یک مورد فعال برای چندین دهه به شمار آورده می شود. هدف این می باشد تا تجهیزانت داشته باشیم که به صورت اتوماتیک فرد خاصی را تعیین هویت کرده یا فرد را از طریق صدای او تشخیص دهیم. بنابر روش های زیست سنجی، تشخیص صدای افراد می تواند در بسیاری از موارد همانند، شبکه های امنیتی، تراکنش های تلفنی و دسترسی به بخش ها کاربرد داشته باشد. گوینده ها به دو گروه تقسیم می شوند. گوینده های هدفمند و گوینده های غیرهدفمند.
شبکه کامپیوتری چیست؟ ص 3
دلایل استفاده از شبکه ص 3
مفهوم گره Node و ایستگاه های کاری ص 5
مدلهای شبکه ص 5
اجزاء شبکه ص 8
انواع شبکه از لحاظ جغرافیایی ص 9
ریخت شناسی شبکه ص 11
پروتکلهای شبکه ص 17
ابزارهای اتصال دهنده ص 24
مفاهیم مربوط به ارسال سیگنال و پهنای باند ص 30
عملکرد یک شبکه ص 31
مراحل نصب Windows server 2003 ص 32
تعریف DHCP server ص 55
مراحل نصب DHcpsever ص 60
تنظیم DHcp Server ص 63
منبع
دسته: کامپیوتر
حجم فایل: 12309 کیلوبایت
تعداد صفحه: 50
این فایل PDF در 50 صفحه به موضوع شبکه های حسگر بیسیم پرداخته و کلیات مباحث مطرح را جمع آوری کرده است. برای افرادی که تمایل به کسب اطلاعات بیشتر در این شبکه ها دارند مناسب است. از این فایل می توان بعنوان فصل اول و دوم پایان نامه زمینه شبکه حسگر بیسم و همچنین بعنوان موضوع سمینار کاملا آماده استفاده کرد.
قبل از خرید دقت داشته باشید که این فایل با فرمت پی دی اف (pdf) می باشد.
قیمت: 25,000 تومان
چکیده
امروزه اینترنت ، اشتراک گذاری انواع اطلاعات را برای همگان آسان کرده است. با این حال، محتوای خشن در وب تأثیر زیان آوری روی کسانی که قدرت قضاوت درست را ندارند مخصوصاً نوجوانان می گذارد. این مقاله، روشی را برای تشخیص خشونت در ویدئو ارائه می کند، این روش تحلیل ویژگی آرام تبعیضانه (D-SFA) را معرفی می کند تا یادگیری توابع ویژگی آرام از انبوه صحنه ها در ویدئو انجام گیرد. پس از آن با توابع ویژگی آرام یادگیری شده، ویژگی های بدست آمده انباشته مربعی شکل (ASD) برای ارائه ویدئو استخراج می شوند. در نهایت، یک ماشین برداری پشتیبان خطی (SVM) برای طبقه بندی آموزش می بیند. ما همچنین یک دیتاست ویدئوی خشن (VV) با 200 نمونه خشونت آمیز و 200 نمونه بدون خشونت جمع آوری شده از اینترنت و فیلم ها ساخته ایم. نتایج تجربی روی دیتاست جدید، کارایی روش پیشنهادی را نشان می دهد.
مقدمه
با رشد سریع وبسایت های شبکه اجتماعی مثل فیس بوک، توئیتر و یوتیوب، ویدئوهای زیادی هر روز آپلود می شود. همانطور که ما از اطلاعات مفید این سایت ها لذت می بریم، برخی ویدئوهای حاوی خشونت نیز توسط کاربران قابل دسترسی هستند. در افرادی که قدرت قضاوت صحیح ندارند مثل کودکان و نوجوانانی که در معرض این محتوا هستند ممکن است منجر به رفتارهای خشونت آمیز شود یا حتی آثار جرم در آن ها با تقلید از آنچه در این فیلم ها دیده اند آشکار شود. بنابراین واضح است که نیاز به محافظت از چنین گروه های حساس جامعه با استفاده از تشخیص دهنده های اتوماتیک، کارا و مؤثر امری ضروری است. با وجود اینکه تشخیص خشونت موضوع داغی در بینایی کامپیوتر نیست اما امری بسیار مهم است. برخی روش ها تاکنون برای حل این مسئله پیشنهاد شده است. در [1] نویسندگان از هشت ویژگی رادیویی در زمینه زمان و فرکانس به عنوان ورودی دسته بندی کننده باینری استفاده کرده اند که محتوای ویدئو را با توجه به میزان خشونت در آن اندازه شناسایی می کند. سپس آن ها کار خود را با استفاده از شبکه های بیزین به مسئله طبقه بندی چند کلاسه تعمیم داده اند.
خلاصه
امروزه اینترنت، اشتراک گذاری انواع اطلاعات را برای همگان آسان کرده است. با این حال، محتوای خشن در وب تأثیر زیان آوری روی کسانی که قدرت قضاوت درست را ندارند مخصوصاً نوجوانان می گذارد. این مقاله، روشی را برای تشخیص خشونت در ویدئو ارائه می کند، این روش تحلیل ویژگی آرام تبعیضانه (D-SFA) را معرفی می کند تا یادگیری توابع ویژگی آرام از انبوه صحنه ها در ویدئو انجام گیرد. پس از آن با توابع ویژگی آرام یادگیری شده، ویژگی های بدست آمدۀ انباشتۀ مربعی شکل (ASD) برای ارائۀ ویدئو استخراج می شوند. در نهایت، یک ماشین برداری پشتیبان خطی (SVM) برای طبقه بندی آموزش می بیند. ما همچنین یک دیتاست ویدئوی خشن (VV) با 200 نمونۀ خشونت آمیز و 200 نمونۀ بدون خشونت جمع آوری شده از اینترنت و فیلم ها ساخته ایم. نتایج تجربی روی دیتاست جدید، کارایی روش پیشنهادی را نشان می دهد.
مقدمه
با رشد سریع وبسایت های شبکه اجتماعی مثل فیس بوک، توئیتر و یوتیوب، ویدئوهای زیادی هر روز آپلود می شود. همانطور که ما از اطلاعات مفید این سایت ها لذت می بریم، برخی ویدئوهای حاوی خشونت نیز توسط کاربران قابل دسترسی هستند. در افرادی که قدرت قضاوت صحیح ندارند مثل کودکان و نوجوانانی که در معرض این محتوا هستند ممکن است منجر به رفتارهای خشونت آمیز شود یا حتی آثار جرم در آن ها با تقلید از آنچه در این فیلم ها دیده اند آشکار شود. بنابراین واضح است که نیاز به محافظت از چنین گروه های حساس جامعه با استفاده از تشخیص دهنده های اتوماتیک، کارا و مؤثر امری ضروری است.
با وجود اینکه تشخیص خشونت موضوع داغی در بینایی کامپیوتر نیست اما امری بسیار مهم است. برخی روش ها تاکنون برای حل این مسئله پیشنهاد شده است. در [1] نویسندگان از هشت ویژگی رادیویی در زمینۀ زمان و فرکانس به عنوان ورودی دسته بندی کنندۀ باینری استفاده کرده اند که محتوای ویدئو را با توجه به میزان خشونت در آن اندازه شناسایی می کند. سپس آن ها کار خود را با استفاده از شبکه های بیزین به مسئلۀ طبقه بندی چند کلاسه تعمیم داده اند.