خلاصه
در این مقاله، ما مشخصات ساخت یک تکنولوژی CMOS نانووایر با قابلیت تنظیم ولتاژ، به منظور بالا بردن انعطاف در طراحی مدار و کاربردهای منطقی قابل تنظیم مجدد را گزارش می دهیم. ساختارهای NW سیلیکونی با اتصالات Schotty_S/D روی لایه سیلیکون-بر-عایق (SOI) ، به منظور ساخت ترانزیستورهای CMOS-مانند تک قطب نابسته به عامل ناخالصی استفاده شده اند. انتخاب نوع وسیله (PMOS یا CMOS) با بکاربری یک بایاس بک-گیت انجام شده است. قابلیت برنامه نویسی چند بعدی این روش در ساخت اینورتر VS-NW-CMOS نشان داده شده است.
مقدمه
نانووایرهای سیلیکون (Si_NW) شدیدن توسط گروه های تحقیقاتی مورد بررسی قرار گرفته و به عنوان جایگزین امیدوار کننده ای برای تکنولوژی های ترانزیستور بر مبنایMOSFET استاندارد، در نظر گرفته شدند؛ نظر باینکه کوچک کردن مقیاس های هندسی کلاسیک وسایل ها MOSFET به بن بست رسیده اند [1]. اگرچه، از آنجایی که ترانزیستورهای نوع n ونوع p سنگ بنای اصلی منطق MOS مکمل امروزی _یعنی ساده ترین وسیلۀ آن، اینورتر [3] می باشد؛ آنطور که پیداست ویژگی ambipolar [2] نانو وایرها یک سد راه می باشند؛ ساخت از پایین به بالای NW مورد بحث ما، روش رشد گاز-مایع-جامد، اغلب با تکنولوژی استاندارد CMOS، بدلیل مواد کاتالیزور استفاده شده، و نیز نیاز دماهای رشد بالا در طی فرآیند ساخت_ سازگار نمی باشد. مشکلات حل نشدۀ دیگری نیز در طی افزودن ناخالصی ظاهر می شوند (برای مثال تجزیۀ عامل ناخالصی) [4 و 5]، بنابراین استفاده از نانووایرهای توسعه یافته در مجموعه های مدار مجتمع با اندازه های بزرگ، خیلی امکان پذیر نمی باشد. همان طور که خواهید دید، بیشتر این دغدغه ها می تواند با ساخت بالا-به-پایین وسایل Si-NW تک قطب، با کنتاکت های Schottky برای درین و سورس، برطرف شود. به علاوه، روش ما بر مبنای کنترل با نوع-ترانزیستور (یعنی PMOS یا NMOS) وسیله، توسط ولتاژ back-gate می باشد؛ که منجر به این می شود که راه برای مشخصه های ترانزیستوری قابل کلیدزنی، تغییر یافتنی باشد.
چکیده
این مقاله یک تقویت کننده شبه تفاضلی کلاس AB برمبنای اینورتر CMOS برای کاربردهای HF، با استفاده از مدار ساده rail to rail CMFB را ارایه می دهد. مدار ارایه شده، دارای دو اینورتر CMOS و فیدبک حالت مشترک مکمل (CMFB) که خود متشکل از آشکارساز حالت مشترک حالت جریان و تقویت کننده های ترنز امپدانسی (transimpedance) ، بوده می باشد. این مدار با استفاده از فناوری CMOS 0.18 نانومتری تحت ولتاژ منبع 1 ولت، طراحی شده است، و نتایج شبیه سازی نشان می دهند که نوسان خروجی rail to rail با استفاده از گین حالت مشترک پایین (15 dB) ، بدست می آید. نوسان خروجی مدار 0.7 v می باشد. تلفات توان مدار 0.96 میکرووات می باشد.
کلیدواژه: تقویت کننده شبه تفاضلی، فیدبک حالت مشترک، کلاس AB، اینورتر CMOS
مقدمه
امروزه، یک مدار آنالوگ با کارکرد خوب عمدتا بسبب پیشرفت ساختن مدار مجتمع فراوان با سیستم های مداری پیچیده، و نیاز به وسایل قابل حمل با منبع باطری بایسته شده است. اگرچه، کاهش منبع ولتاژ در مدارات آنالوگ باعث کاهش عملکرد زیادی می شود، و بنابراین، ترفندهای تازه ای برای طراحی نیاز است تا مدارات آنالوگ با پهنای باند، بهره، و خطی بودن کافی را بدست آورد. تقویت کننده هدایت عرضی (OTA) ، یکی از پایه ای ترین سلول ها از آنجایی که OTA کاربرد زیادی در بسیاری از مدارات آنالوگ مانند تقویت کننده عملیاتی، مقایسه گرهای ولتاژ، مبدل های A D و D A و فیلترهای فرکانس بالا، دارد می باشد. روش های زیادی هم با استفاده از پیکربندی کاملن تفاضلی و هم با استفاده از پیکربندی شبه تفاضلی، برای طراحی OTA ولتاژ پایین [1 4] ارایه شده اند. FD بطور معمول، مبنی بر یک جفت تفاضلی با یک منبع جریان tail است، درحالی که PD مبنی بر دو اینورتر مستقل، بدون منبع جریان tail می باشد.
خلاصه
این مقاله یک تقویت کنندۀ شبه- تفاضلی کلاس-AB برمبنای اینورتر CMOS برای کاربردهای HF، با استفاده از مدار ساده rail-to-rail CMFB را ارایه می دهد. مدار ارایه شده، دارای دو اینورتر CMOS و فیدبک حالت-مشترک مکمل (CMFB) _که خود متشکل از آشکارساز حالت-مشترک حالت جریان و تقویت کننده های ترنز-امپدانسی (transimpedance) ، بوده_ می باشد. این مدار با استفاده از فناوری CMOS 0.18 نانومتری تحت ولتاژ منبع 1 ولت، طراحی شده است، و نتایج شبیه سازی نشان می دهند که نوسان خروجی rail to rail با استفاده از گین حالت-مشترک پایین (-15 dB) ، بدست می آید. نوسان خروجی مدار 0.7 v می باشد. تلفات توان مدار 0.96 میکرووات می باشد.
کلمات کلیدی: تقویت کنندۀ شبه تفاضلی، و فیدبک حالت-مشترک، کلاس-AB، اینورتر CMOS
مقدمه
امروزه، یک مدار آنالوگ با کارکرد خوب _عمدتا بسبب پیشرفت ساختن مدار مجتمع فراوان با سیستم های مداری پیچیده، و نیاز به وسایل قابل حمل با منبع باطری_ بایسته شده است. اگرچه، کاهش منبع ولتاژ در مدارات آنالوگ باعث کاهش عملکرد زیادی می شود، و بنابراین، ترفندهای تازه ای برای طراحی نیاز است تا مدارات آنالوگ با پهنای باند، بهره، و خطی بودن کافی را بدست آورد.
خلاصه
مقدمه
همزمان با ادامه توسعۀ تکنولوژی نیمه هادی ها، وسایل منطقی نیمه هادی اکسید-فلزی مکمل (CMOS) ، در مدارات دیجیتال و نیز ساخت آی-سی ها در مقیاس های بسیاربزرگ (VLSI) ، استفاده می شود؛ و این بدلیل مصرف توان استاتیک کم و کاهش نویز خوب آن می باشد. بدبختانه، پردازش پیچیده، هزینه های ساخت زیاد، و پویایی تطبیق نیافته، مسایل جدی وسایل منطقی CMOS سیلیکونی می باشند. همچنین، زمانی که ابعاد وسایل کوچک می شوند، به نظر می رسد که پهنای بیشتر PMOSFETها به سختی بتوانند به چگالی زیاد ساخت مدار مجتمع، دست یابند. تعدادی چند از مطالعات بر روی CMOS گزارش شدند که می توانند مشکلات گفته شده در بالا را _مثلا ساخت وسیله بر روی لایه سلیکون-روی-عایق (SOI) [1]، و روی سطح ژرمانیوم روی عایق (GeOI) [2]، و یا روی مواد III-V [3] و [4]، یا استفاده از تکنولوژی مهندسی فشار و ساخت آی-سی سه بعدی [5] _ را آسان کنند. با این حال، مسایل مربوط به جبران سازی پهنای PMOSFET و فرآیندهای پیچیدۀ آن هنوز باقی است.
در دهه 1980، Yasuhisa Omura ترانزیستور گیت-جدا نوع-دوقطبی غیر مستقیم جانبی (LUBISTOR) را [6] و [7] که همانند یک دیود P-I-N کنترل شده کار می کرد، معرفی کرد. همچنین، ترانزیستورهای اثر میدان تونلی P-I-N (TFET) بخاطر مصرف توان پایینشان، تا بامروز مورد استقبال قرار گرفته اند. این به خاطر نوسان زیرآستانۀ سراشیبی (S. S.) و نسبت جریان ION/loFF بالای [8] و [9] مزایای TFETها برای مقیاس بندی ولتاژ منبع توان، می باشد. اخیرا، JL NMOSFTها [10] هم بسیار پر طرفدار بوده اند. نداشتن اتصال، ساخت آنها را به دلیل نبود اتصالات سورس/درین S/D آسانتر کرده است. به علاوه، زمانی که ابعاد وسیله کوچکتر می شوند، اثرات کانال-کوتاه (SCE) و کاهش مانع القای-درین (DIBL) ، می تواند به اندازۀ کافی در JL NMOSFETها کاهش داده شود.
مقدمه
همزمان با ادامه توسعه تکنولوژی نیمه هادی ها، وسایل منطقی نیمه هادی اکسید فلزی مکمل (CMOS) ، در مدارات دیجیتال و نیز ساخت آی سی ها در مقیاس های بسیاربزرگ (VLSI) ، استفاده می شود؛ و این بدلیل مصرف توان استاتیک کم و کاهش نویز خوب آن می باشد. بدبختانه، پردازش پیچیده، هزینه های ساخت زیاد، و پویایی تطبیق نیافته، مسایل جدی وسایل منطقی CMOS سیلیکونی می باشند. همچنین، زمانی که ابعاد وسایل کوچک می شوند، به نظر می رسد که پهنای بیشتر PMOSFETها به سختی بتوانند به چگالی زیاد ساخت مدار مجتمع، دست یابند. تعدادی چند از مطالعات بر روی CMOS گزارش شدند که می توانند مشکلات گفته شده در بالا را _مثلا ساخت وسیله بر روی لایه سلیکون روی عایق (SOI) [1]، و روی سطح ژرمانیوم روی عایق (GeOI) [2]، و یا روی مواد III V [3] و [4]، یا استفاده از تکنولوژی مهندسی فشار و ساخت آی سی سه بعدی [5] _ را آسان کنند. با این حال، مسایل مربوط به جبران سازی پهنای PMOSFET و فرآیندهای پیچیده آن هنوز باقی است. در دهه 1980، Yasuhisa Omura ترانزیستور گیت جدا نوع دوقطبی غیر مستقیم جانبی (LUBISTOR) را [6] و [7] که همانند یک دیود P I N کنترل شده کار می کرد، معرفی کرد. همچنین، ترانزیستورهای اثر میدان تونلی P I N (TFET) بخاطر مصرف توان پایینشان، تا بامروز مورد استقبال قرار گرفته اند. این به خاطر نوسان زیرآستانه سراشیبی (S. S.) و نسبت جریان ION/loFF بالای [8] و [9] مزایای TFETها برای مقیاس بندی ولتاژ منبع توان، می باشد. اخیرا، JL NMOSFTها [10] هم بسیار پر طرفدار بوده اند. نداشتن اتصال، ساخت آنها را به دلیل نبود اتصالات سورس/درین S/D آسانتر کرده است. به علاوه، زمانی که ابعاد وسیله کوچکتر می شوند، اثرات کانال کوتاه (SCE) و کاهش مانع القای درین (DIBL) ، می تواند به اندازه کافی در JL NMOSFETها کاهش داده شود.