خلاصه
این مقاله اثرات تزریق کردن سیگنال های اضافی به درون موتور القایی به منظور کنترل سرعت را بررسی می نماید. مدل جدید اشباع، قادر خواهد بود که تعامل بین سیگنالهای اضافی و اشباع هسته موتور که بر روی شار تولید کنندۀ گشتاور تاثیر دارند، را بیان نماید. در ابتدا ضریب اشباع متغیر به منظور مدل کردن سطح اشباع متغیر که به واسطه اشباع ایجاد شده است را بیان می کند. یک سیگنال ولتاژ متعادل نیز به تغذیه معمولی اضافه شده است تا اثرات چنین سیگنالهای اضافی بر موتور القایی اشباع شده بررسی گردد. نتایج شبیه سازی چنین مدلی در حالات بدون بار و بار کامل به همراه اندازه گیریهای آزمایشگاهی ارائه شده است.
کلمات شاخص: هارمونیکهای شار فاصله هوایی- تخمین موقعیت شار- مدل q-d مدل سازی حالت اشباع – کنترل بدون حسگر.
مقدمه
تزریق مولفه های سیگنال () فرکانس بالا به فرمان جریانی یک اینورتر مدولاسیون پالس از یک ولتاژ منبع (PWM) در حال حاضر یکی از بیشترین موارد مطالعه و بررسی روشهای کنترل سرعت موتورهای القایی (IM) ، بدون نیاز به موقعیت شفت یا حسگر سرعت (بدون حسگر) می باشد. به سادگی می توان نشان داد که تزریق سیگنالهای فرکانس بالای هارمونیکهای ولتاژ و جریان اضافی ایجاد می کند. که اطلاعات مورد نیاز جهت کنترل بدون حسگر را به دست می آورد مرجع (1).
چکیده
این مقاله اثرات تزریق کردن سیگنال های اضافی به درون موتور القایی به منظور کنترل سرعت را بررسی می نماید. مدل جدید اشباع، قادر خواهد بود که تعامل بین سیگنالهای اضافی و اشباع هسته موتور که بر روی شار تولید کننده گشتاور تاثیر دارند، را بیان نماید. در ابتدا ضریب اشباع متغیر به منظور مدل کردن سطح اشباع متغیر که به واسطه اشباع ایجاد شده است را بیان می کند. یک سیگنال ولتاژ متعادل نیز به تغذیه معمولی اضافه شده است تا اثرات چنین سیگنالهای اضافی بر موتور القایی اشباع شده بررسی گردد. نتایج شبیه سازی چنین مدلی در حالات بدون بار و بار کامل به همراه اندازه گیریهای آزمایشگاهی ارائه شده است.
کلمات شاخص: هارمونیکهای شار فاصله هوایی، تخمین موقعیت شار، مدل q-d مدل سازی حالت اشباع، کنترل بدون حسگر
مقدمه
تزریق مولفه های سیگنال فرکانس بالا به فرمان جریانی یک اینورتر مدولاسیون پالس از یک ولتاژ منبع (PWM) در حال حاضر یکی از بیشترین موارد مطالعه و بررسی روشهای کنترل سرعت موتورهای القایی (IM) ، بدون نیاز به موقعیت شفت یا حسگر سرعت (بدون حسگر) می باشد. به سادگی می توان نشان داد که تزریق سیگنالهای فرکانس بالای هارمونیکهای ولتاژ و جریان اضافی ایجاد می کند. که اطلاعات مورد نیاز جهت کنترل بدون حسگر را به دست می آورد مرجع (1).
خلاصه
در این مقاله، در مورد چالش های مختلف کار در ناحیه زیرآستانه ای در مدارهای با فناوری CMOS 65 نانومتر، بحث می شود. مدارهای گوناگونی برای یافتن بهترین آرایش در ناحیه کاری زیرآستانه ای مورد بررسی قرار می گیرد و در کار با ولتاژهای تغذیه بسیار پایین شبیه سازی می گردد. برای پشتیبانی از مباحث نظری انجام شده، آرایش های گوناگون مداری مورد آزمایش و شبیه سازی قرار می گیرد. جنبه های گوناگون مدارهای فلیپ فلاپ با جزییات تشریح می شود تا بهترین توپولوژی برای استفاده در ولتاژهای تغذیه بسیار پایین و کاربردهای بسیار کم توان بررسی شود. نتایج شبیه سازی نشان می دهد مصرف توان در مدارهای پیشنهادی این مقاله، مقایسه با دیگر فلیپ فلاپ ها حداقل 23% کاهش می یابد. همچنین زمان راه اندازی و زمان نگهداری نیز بهبود می یابد.
کلمات کلیدی: ولتاژ پایین، کم توان، زیرآستانه، مقیاس نانو
مقدمه
در چند سال اخیر، تلاشهای زیادی در جهت تحقیق و توسعه مدارهای کاربردی کم توان برای گرههای حسگری بی سیم تغذیه شده با باتری صورت گرفته است. اخیرا تعدادی از مقالات در این زمینه، در رابطه با استفاده از حوزه زمانی ADC به جای حوزه دامنه بحث کرده اند [1] – [4]. در مقالات مذکور، مبدل ها را می توان تماما از مولفه مداری دیجیتال ایجاد کرد، اما این کار شرایط بسیار بسته ای را برای مقایسه گر و مدار نمونه بردای ایجاد خواهد کرد. برای مطابقت با این شرایط، باید فلیپ فلاپ های کم توان و پرسرعت با احتمال کم زیرپایداری طراحی شود. در سالهای اخیر، با کوچک شدن مقیاس های مداری در ابعاد اتمی، جریان های نشت مداری افزایش چشمگیر داشته است که منجر به اتلاف توان بالاتر می شود.
چکیده:
با پیشرفت تکنولوژی و علوم در ابعاد گوناگون بخصوص الکترونیک و نفوذ آن به علوم دیگر مانند مکانیک به عنوان کنترلر؛ که با دقت، سرعت، صرف هزینه کم و بهره وری بالا، بهترین راندمان را ارائه می دهد، موتورهای دیزل نیز از این قاعده مستثنی نیستند. با ورود الکترونیک به دنیای دیزل با بالا رفتن دقت و سرعت کنترل؛ مصرف سوخت کم، شتاب گیری بالا، صدای کم، آلودگی پائین و بطور کلی راندمان موتور، افزایش می یابد. ز آنجا که این سیستم ها انحصاری می باشد می بایست برای آشنایی با آنها به اطلاعات شرکت سازنده متکی بود. البته برای جامع بودن این اطلاعات می توان اطلاعات چند شرکت را جمع آوری و مقایسه نمود. برای عیب یابی وتعمیرات اینگونه سیستم ها نیاز به عیب یاب های الکترونیکی می باشد. با این وجود باید با نحوه عملکرد و ساختار این سیستم ها آشنایی کامل داشت. در این پروژه با برخی از انواع این سیستم ها آشنا می شویم.
فهرست مطالب
مقدمه
فصل اول کنترل الکترونیکی دیزل EDC (Electronic Diesel Control)
۱-۱ نگاه اجمالی به سیستم
۱-۲ الزامات
۱-۳ بخش های سیستم
فصل دوم واحد کنترل الکترونیکی ECU (Electronic Control Unit)
۲-۱ وضعیت عملکرد
۲-۲ طرح و ساختار
۲-۳ پردازش داده ها
۲-۴ عملکرد EDC
۲-۵ انتقال اطلاعات به سیستم های دیگر
فصل سوم حسگرها (Sensors)
۳-۱ کاربردهای خودرویی
۳-۲ حسگرهای دما
۳-۳ حسگرهای فشار از نوع میکرومکانیکی
۳-۴ حسگرهای زاویه و دور موتور از نوع القایی
۳-۵ حسگر مرحله از نوع هال HALL
۳-۶ حسگرهای پدال گاز
۳-۷ اندازه گیر جرم هوا از نوع لایه داغ (فیلم داغ) HFM۵
فصل چهارم عملگرها (Actuators)
۴-۱ عملگرهای الکترونیوماتیک (برقی- بادی)
۴-۲ شیر EGR
۴-۳ دریچه گاز
۴-۴ دریچه مانیفولد ورودی
۴-۵ سیستم های ترمز
۴-۶ کنترل پروانه FAN
۴-۷ سیستم های کمک استارت
نتیجه گیری نهایی و پیشنهادها
فهرست منابع و مراجع
واژه نامه انگلیسی به فارسی